Zero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods
نویسندگان
چکیده
The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem’s subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call “zero-convexity”. This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.
منابع مشابه
Projected Subgradient Minimization Versus Superiorization
The projected subgradient method for constrained minimization repeatedly interlaces subgradient steps for the objective function with projections onto the feasible region, which is the intersection of closed and convex constraints sets, to regain feasibility. The latter poses a computational difficulty and, therefore, the projected subgradient method is applicable only when the feasible region ...
متن کاملOn The Behavior of Subgradient Projections Methods for Convex Feasibility Problems
We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy that controls the relaxation parameters in a specific manner leaves enough user-flexibility but giv...
متن کاملConvex feasibility modeling and projection methods for sparse signal recovery
A computationally-efficient method for recovering sparse signals from a series of noisy observations, known as the problem of compressed sensing (CS), is presented. The theory of CS usually leads to a constrained convex minimization problem. In this work, an alternative outlook is proposed. Instead of solving the CS problem as an optimization problem, it is suggested to transform the optimizati...
متن کاملOn The Behavior of Subgradient Projections Methods for Convex Feasibility Problems in Euclidean Spaces
We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm's behavior in t...
متن کاملSeminorm-Induced Oblique Projections for Sparse Nonlinear Convex Feasibility Problems
Simultaneous subgradient projection algorithms for the convex feasibility problem use subgradient calculations and converge sometimes even in the inconsistent case. We devise an algorithm that uses seminorm-induced oblique projections onto super half-spaces of the convex sets, which is advantageous when the subgradient-Jacobian is a sparse matrix at many iteration points of the algorithm. Using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 152 شماره
صفحات -
تاریخ انتشار 2015